刷题指南

一、数据结构的存储方式

数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)

这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?


我们分析问题,一定要有递归的思想,自顶向下,从抽象到具体。

你上来就列出这么多,那些都属于「上层建筑」,

数组和链表才是「结构基础」。

因为那些多样化的数据结构,究其源头,都是在链表或者数组上的特殊操作,API 不同而已。

比如说「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。

用数组实现,就要处理扩容缩容的问题;

用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。


「图」的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。

邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,

但是如果图比较稀疏的话很耗费空间。

邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。


「散列表」就是通过散列函数把键映射到一个大数组里。

而且对于解决散列冲突的方法,

拉链法需要链表特性,操作简单,但需要额外的空间存储指针;

线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。


「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;

用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。

为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。


综上,数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,二者的优缺点如下

数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);

而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。

但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;

而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。


二、数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

 

N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

所谓框架,就是套路。不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了,下面会具体举例


三、算法刷题指南

首先要明确的是,数据结构是工具,算法是通过合适的工具解决特定问题的方法。也就是说,学习算法之前,最起码得了解那些常用的数据结构,了解它们的特性和缺陷。

那么该如何在 LeetCode 刷题呢?直接说具体的建议:

先刷二叉树,先刷二叉树,先刷二叉树

为什么要先刷二叉树呢,因为二叉树是最容易培养框架思维的,而且大部分算法技巧,本质上都是树的遍历问题

刷二叉树看到题目没思路?根据很多读者的问题,其实大家不是没思路,只是没有理解我们说的「框架」是什么。

不要小看这几行破代码,几乎所有二叉树的题目都是一套这个框架就出来了

void traverse(TreeNode root) {
  // 前序遍历
  traverse(root.left)
  // 中序遍历
  traverse(root.right)
  // 后序遍历
}

比如说我随便拿几道题的解法出来,不用管具体的代码逻辑,只要看看框架在其中是如何发挥作用的就行。





你看,Hard 难度的题目不过如此,而且还这么有规律可循,只要把框架写出来,然后往相应的位置加东西就行了,这不就是思路吗。

对于一个理解二叉树的人来说,刷一道二叉树的题目花不了多长时间。

那么如果你对刷题无从下手或者有畏惧心理,不妨从二叉树下手,前 10 道也许有点难受;结合框架再做 20 道,也许你就有点自己的理解了;

刷完整个专题,再去做什么回溯动规分治专题,

你就会发现只要涉及递归的问题,都是树的问题


再举例吧,说几道我们之前文章写过的问题。

动态规划详解说过凑零钱问题,暴力解法就是遍历一棵 N 叉树:

其实很多动态规划问题就是在遍历一棵树,你如果对树的遍历操作烂熟于心,起码知道怎么把思路转化成代码,也知道如何提取别人解法的核心思路。


再看看回溯算法,前文回溯算法详解干脆直接说了,回溯算法就是个 N 叉树的前后序遍历问题,没有例外。

N 叉树的遍历框架,找出来了把~你说,树这种结构重不重要?


综上,对于畏惧算法的朋友来说,可以先刷树的相关题目,试着从框架上看问题,而不要纠结于细节问题

纠结细节问题,就比如纠结 i 到底应该加到 n 还是加到 n – 1,这个数组的大小到底应该开 n 还是 n + 1 ?

从框架上看问题,就是像我们这样基于框架进行抽取和扩展,既可以在看别人解法时快速理解核心逻辑,也有助于找到我们自己写解法时的思路方向。

当然,如果细节出错,你得不到正确的答案,但是只要有框架,你再错也错不到哪去,因为你的方向是对的。

但是,你要是心中没有框架,那么你根本无法解题,给了你答案,你也不会发现这就是个树的遍历问题。

这种思维是很重要的,动态规划详解中总结的找状态转移方程的几步流程,有时候按照流程写出解法,说实话我自己都不知道为啥是对的,反正它就是对了。。。

这就是框架的力量,能够保证你在快睡着的时候,依然能写出正确的程序;

就算你啥都不会,都能比别人高一个级别。


四、总结几句

数据结构的基本存储方式就是链式和顺序两种,

基本操作就是 增删查改

遍历方式无非 迭代和递归

刷算法题建议从「树」分类开始刷,结合框架思维,把这几十道题刷完,对于树结构的理解应该就到位了。

这时候去看回溯、动规、分治等算法专题,对思路的理解可能会更加深刻一些。