二叉堆(Binary Heap)没什么神秘,性质比二叉搜索树 BST 还简单。其主要操作就两个,sink
(下沉)和 swim
(上浮),用以维护二叉堆的性质。其主要应用有两个,首先是一种排序方法「堆排序」,第二是一种很有用的数据结构「优先级队列」。
本文就以实现优先级队列(Priority Queue)为例,通过图片和人类的语言来描述一下二叉堆怎么运作的。
一、二叉堆概览
首先,二叉堆和二叉树有啥关系呢,为什么人们总数把二叉堆画成一棵二叉树?
因为,二叉堆其实就是一种特殊的二叉树(完全二叉树),只不过存储在数组里。一般的链表二叉树,我们操作节点的指针,而在数组里,我们把数组索引作为指针:
画个图你立即就能理解了,注意数组的第一个索引 0 空着不用,
PS:因为数组索引是数组,为了方便区分,将字符作为数组元素。
你看到了,把 arr[1] 作为整棵树的根的话,每个节点的父节点和左右孩子的索引都可以通过简单的运算得到,这就是二叉堆设计的一个巧妙之处。为了方便讲解,下面都会画的图都是二叉树结构,相信你能把树和数组对应起来。
二叉堆还分为最大堆和最小堆。最大堆的性质是:每个节点都大于等于它的两个子节点。类似的,最小堆的性质是:每个节点都小于等于它的子节点。
两种堆核心思路都是一样的,本文以最大堆为例讲解。
对于一个最大堆,根据其性质,显然堆顶,也就是 arr[1] 一定是所有元素中最大的元素。
二、优先级队列概览
优先级队列这种数据结构有一个很有用的功能,你插入或者删除元素的时候,元素会自动排序,这底层的原理就是二叉堆的操作。
数据结构的功能无非增删查该,优先级队列有两个主要 API,分别是 insert
插入一个元素和 delMax
删除最大元素(如果底层用最小堆,那么就是 delMin
)。
下面我们实现一个简化的优先级队列,先看下代码框架:
PS:为了清晰起见,这里用到 Java 的泛型,Key
可以是任何一种可比较大小的数据类型,你可以认为它是 int、char 等。
空出来的四个方法是二叉堆和优先级队列的奥妙所在,下面用图文来逐个理解。
三、实现 swim 和 sink
为什么要有上浮 swim 和下沉 sink 的操作呢?为了维护堆结构。
我们要讲的是最大堆,每个节点都比它的两个子节点大,但是在插入元素和删除元素时,难免破坏堆的性质,这就需要通过这两个操作来恢复堆的性质了。
对于最大堆,会破坏堆性质的有有两种情况:
-
如果某个节点 A 比它的子节点(中的一个)小,那么 A 就不配做父节点,应该下去,下面那个更大的节点上来做父节点,这就是对 A 进行下沉。
-
如果某个节点 A 比它的父节点大,那么 A 不应该做子节点,应该把父节点换下来,自己去做父节点,这就是对 A 的上浮。
当然,错位的节点 A 可能要上浮(或下沉)很多次,才能到达正确的位置,恢复堆的性质。所以代码中肯定有一个 while
循环。
细心的读者也许会问,这两个操作不是互逆吗,所以上浮的操作一定能用下沉来完成,为什么我还要费劲写两个方法?
是的,操作是互逆等价的,但是最终我们的操作只会在堆底和堆顶进行(等会讲原因),显然堆底的「错位」元素需要上浮,堆顶的「错位」元素需要下沉。
上浮的代码实现:
画个 GIF 看一眼就明白了:
下沉的代码实现:
下沉比上浮略微复杂一点,因为上浮某个节点 A,只需要 A 和其父节点比较大小即可;但是下沉某个节点 A,需要 A 和其两个子节点比较大小,如果 A 不是最大的就需要调整位置,要把较大的那个子节点和 A 交换。
画个 GIF 看下就明白了:
至此,二叉堆的主要操作就讲完了,一点都不难吧,代码加起来也就十行。明白了 sink
和 swim
的行为,下面就可以实现优先级队列了。
四、实现 delMax 和 insert
这两个方法就是建立在 swim
和 sink
上的。
insert
方法先把要插入的元素添加到堆底的最后,然后让其上浮到正确位置。
至此,一个优先级队列就实现了,插入和删除元素的时间复杂度为 O(logK)
,K
为当前二叉堆(优先级队列)中的元素总数。因为我们时间复杂度主要花费在 sink
或者 swim
上,而不管上浮还是下沉,最多也就树(堆)的高度,也就是 log 级别。
五、最后总结
二叉堆就是一种完全二叉树,所以适合存储在数组中,而且二叉堆拥有一些特殊性质。
二叉堆的操作很简单,主要就是上浮和下沉,来维护堆的性质(堆有序),核心代码也就十行。
优先级队列是基于二叉堆实现的,主要操作是插入和删除。插入是先插到最后,然后上浮到正确位置;删除是调换位置后再删除,然后下沉到正确位置。核心代码也就十行。
也许这就是数据结构的威力,简单的操作就能实现巧妙的功能,真心佩服发明二叉堆算法的人!