本文就解决一类最难掌握的双指针技巧:滑动窗口技巧。
这个算法技巧的思路非常简单,就是维护一个窗口,不断滑动,然后更新答案。
LeetCode 上有起码 10 道运用滑动窗口算法的题目,难度都是中等和困难。
该算法的大致逻辑如下:
这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。
其实困扰大家的,不是算法的思路,而是各种细节问题。比如说如何向窗口中添加新元素,如何缩小窗口,在窗口滑动的哪个阶段更新结果。
所以今天我就写一套滑动窗口算法的代码框架,以后遇到相关的问题,你就默写出来如下框架然后改三个地方就行,还不会出 bug:
其中两处 ...
表示的更新窗口数据的地方,到时候你直接往里面填就行了。
而且,这两个 ...
处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。
言归正传,下面就直接上四道 LeetCode 原题来套这个框架,其中第一道题会详细说明其原理,后面四道就直接闭眼睛秒杀了。
本文代码为 C++ 实现,不会用到什么编程方面的奇技淫巧,但是还是简单介绍一下一些用到的数据结构,以免有的读者因为语言的细节问题阻碍对算法思想的理解:
unordered_map
就是哈希表(字典),它的一个方法 count(key)
相当于 Java 的 containsKey(key)
可以判断键 key 是否存在。
可以使用方括号访问键对应的值 map[key]
。需要注意的是,如果该 key
不存在,C++ 会自动创建这个 key,并把 map[key]
赋值为 0。
所以代码中多次出现的 map[key]++
相当于 Java 的 map.put(key, map.getOrDefault(key, 0) + 1)
。
一、最小覆盖子串
LeetCode 76 题,Minimum Window Substring,难度 Hard:
就是说要在 S
(source) 中找到包含 T
(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。
滑动窗口算法的思路是这样:
1、我们在字符串 S
中使用双指针中的左右指针技巧,初始化 left = right = 0
,把索引左闭右开区间 [left, right)
称为一个「窗口」。
2、我们先不断地增加 right
指针扩大窗口 [left, right)
,直到窗口中的字符串符合要求(包含了 T
中的所有字符)。
3、此时,我们停止增加 right
,转而不断增加 left
指针缩小窗口 [left, right)
,直到窗口中的字符串不再符合要求(不包含 T
中的所有字符了)。同时,每次增加 left
,我们都要更新一轮结果。
4、重复第 2 和第 3 步,直到 right
到达字符串 S
的尽头。
这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。
下面画图理解一下,needs
和 window
相当于计数器,分别记录 T
中字符出现次数和「窗口」中的相应字符的出现次数。
初始状态:
增加 right
,直到窗口 [left, right]
包含了 T
中所有字符:
现在开始增加 left
,缩小窗口 [left, right]
。
直到窗口中的字符串不再符合要求,left
不再继续移动。
之后重复上述过程,先移动 right
,再移动 left
…… 直到 right
指针到达字符串 S
的末端,算法结束。
如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用:
首先,初始化 window
和 need
两个哈希表,记录窗口中的字符和需要凑齐的字符:
然后,使用 left
和 right
变量初始化窗口的两端,不要忘了,区间 [left, right)
是左闭右开的,所以初始情况下窗口没有包含任何元素:
其中 valid
变量表示窗口中满足 need
条件的字符个数,如果 valid
和 need.size
的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T
。
现在开始套模板,只需要思考以下四个问题:
1、当移动 right
扩大窗口,即加入字符时,应该更新哪些数据?
2、什么条件下,窗口应该暂停扩大,开始移动 left
缩小窗口?
3、当移动 left
缩小窗口,即移出字符时,应该更新哪些数据?
4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?
如果一个字符进入窗口,应该增加 window
计数器;如果一个字符将移出窗口的时候,应该减少 window
计数器;当 valid
满足 need
时应该收缩窗口;应该在收缩窗口的时候更新最终结果。
下面是完整代码:
需要注意的是,当我们发现某个字符在 window
的数量满足了 need
的需要,就要更新 valid
,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。
当 valid == need.size()
时,说明 T
中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。
移动 left
收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。
至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿。
下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。